

Karen Pykerman, MPH
Research Associate, University of Calgary
CAHSPR 2013 Conference

Introduction and Objectives

HR vs. THA

 Hip resurfacing (HR) was developed as a surgical alternative to total hip arthroplasty (THA)

O HR:

- Head of the femur not completely removed
- New metal head that fits a metal acetabular component
- Also referred to as metal-onmetal (MOM) implant

O THA:

- Head of femur and acetabulum ("socket") are removed and replaced
- Also referred to as a total hip replacement

ISSUE

- Safety of HR is controversial
 - Concerns over adverse events and early device failure
- Limited long-term follow-up regarding overall safety and estimated revision rates for HR

March 2, 2013

The nightmare of Margaret Wente's miracle artificial hips

By Margaret Wente

Implant manufacturers are facing big class-action lawsuits

Eight years ago, I sat in a surgeon's office as he showed me X-rays of my deteriorating hips. He told me they were finished. I was only in my 50s, but I wasn't surprised. By the time I saw him, I could scarcely walk. I had skied and hiked and led a reasonably active life, but now I was a cripple. Sometimes I had to use the railings to drag myself hand over hand up the stairs.

ISSUE

- Currently, adverse events are reported using nonstandardized metrics and do not account for sample size and length of follow up time
 - For example, 1% revision rate
- Comparisons between THA and HR outcomes are challenging due to:
 - Lack of standardized outcome measures
 - Study heterogeneity (e.g. follow up time, sample size)
 - Lack of analysis by device market status

OBJECTIVES

- We conducted a systematic review comparing HR to THA
- Standardized rates to an average per 1000 person years
 - Able to address gaps not previously addressed in published literature
 - Able to compare outcomes between THA studies that had longer-term follow-ups, to HR studies with limited follow-up

PICO FRAMEWORK

- Population: adult patients (≥ 18 years)
- Intervention: primary HR
- Comparison: primary THA
- Outcomes: adverse events, safety issues or revision rates

SEARCH STRATEGY

• Studies were identified through the following electronic databases: MEDLINE, PubMed, EMBASE, the Cochrane Library, BIOSIS Previews, and Web of Science from 1997 to 2011

Inclusion criteria:

 English language studies reporting adverse events, complications, safety issues or revision rates for adults with primary hip OA, who underwent either primary HR or THA

Outcomes of interest:

 Revision, reoperation, dislocation, infection/sepsis, femoral neck fracture, time to revision, rates of early failure, mortality, and postoperative component alignment

JOINT REPLACEMENT REGISTRIES COMPARISON

 Revision rates were compared to rates from four joint replacement registries (JRR):

JRR	Year registry started	Number of primary hip procedures
Australia	1999	THA: 25,478 (2011) HR: 991 (2011)
New Zealand	1999	THA: 7218 (2011) HR: 142 (2011)
Sweden	1979	THA: 15,935 (2010) HR: 214 (2010)
England and Wales	2003	THA: 59,405-69,871 (2011) HR: 1801 (2011)

 These JRRs were chosen because they are members of the ISAR, have large sample sizes and are commonly used to reference adverse event rates

ANALYSIS

- Results were standardized using weighted averages per 1000 person years and stratified by age, publication date and market status (in-use and discontinued)
- Prosthesis device types were extracted from each article and sorted by market status:
 - All devices (both in-use and discontinued)
 - 2. Devices currently in-use
- Excluded studies that focused on specific subpopulations
 - e.g. revision specific, based on registry data, adults younger than 30 years, adults over 80 years, and obese populations/smokers

Records after duplicates removed

(n = 7,421)

Records screened (n = 7,421)

Full-text articles assessed for eligibility

(n = 384)

Studies included (n = 236)

Records excluded (n =7,037)

Full-text articles excluded, with reasons (n = 148)Commentaries, letters, editorials 12 Non-systematic reviews or case series with 17 <10 participants Age < 18 years 51 Pre- or post-operative interventions 2 Focus on surgical techniques/procedure 21 effectiveness In vitro/in situ studies 2

Not a THA or HR or revisions study

Adverse events not reported

Not primary or original research

2

24

17

DISTRIBUTION OF STUDY DESIGNS FOR INCLUDED ARTICLES

Study Design	Only <u>6</u> of 17 RCTs were head-to-head comparisons!	Number of I	Full-text Articles %
Randomized control trial		17	7.2
Case control		14	5.9
Prospective cohort		110	46.6
Retrospective cohort		85	36.0
Prospective observational (multigroup)		4	1.7
Retrospective observational (multigroup)		4	1.7
Case series (with more than 10 participants)		2	0.8
TOTAL		236	100

Average revisions per 1000 person years compared to the proportion of revisions in the same analyzed literature

AVERAGE REVISIONS PER 1000 PERSON YEARS COMPARING ALL **THA** DEVICES (IN-USE AND DISCONTINUED) AND CURRENTLY IN-USE **THA** DEVICES

Average revisions per 1000 person years comparing all **HR** devices (in-use and discontinued) and currently in-use **HR** devices

AVERAGE TIME TO REVISION (YEARS) AND EARLY REVISIONS/REOPERATIONS (WITHIN 5 YEARS OF SURGERY)

	All devices (in-use and discontinued)		Currently in-use devices	
	THA	HR	THA	HR
Average time to revision (in years)	7.7	3.0	5.7	2.9
N	10	9	2	7
Early revisions/reoperations				
(within 5 years of surgery)	4.3	11.3	4.0	10.3
N	21	19	8	12

JRR REVISION RATES AFTER STANDARDIZING RATES PER 1000 PERSON YEARS (1)

Device	Australia	New Zealand	Sweden	England and Wales
THA	3.2	2.7	2.6	7.4
Revisions	6,321	2,278	27,134	6,104
Follow up time (years)	10	12	31	827,276 observed years
HR	4.6	2.4	4.1	14.2
Revisions	660	32	72	867
Follow up time (years)	10	12	10	61,170 observed years

JRR REVISION RATES AFTER STANDARDIZING RATES PER 1000 PERSON YEARS (2)

Device	Australia	New Zealand	Sweden	England and Wales	Our Study
THA	3.2	2.7	2.6	7.4	6.7
HR	4.6	2.4	4.1	14.2	10.8

Conclusions

KEY FINDINGS VS. LITERATURE

- Revision and early revision/reoperation rates were higher in HR devices
 - Consistent with previous reviews of the literature^{1,2,3,4}
- Time to revision (in years) has not been reported by other reviews of the literature comparing HR to THA^{1,2,3,4}
- Adverse event definitions are not standardized throughout the literature

¹Jiang et al. J Arthroplasty 2011; 26(3):419-426.

²Springer et al. J Arthroplasty 2009; 24(6 Suppl):2-8.

³van der Weegen et al. J Bone Joint Surg Br 2011; 93(3):298-306.

⁴Smith et al. Acta Orthop 2010; 81(6):684-695.

STRENGTHS AND LIMITATIONS

Strengths

- Used averages per 1000 person-years
- Examined a large body of evidence
- Analyzed results by market status

Limitations

- Non-standardized definitions and study heterogeneity
- Under-reporting of prosthesis type
- Some studies were not able to be grouped into market status categories
- Unable to examine gender differences

Conclusions (1)

- Revision rates are higher for HR and time to revision is shorter for HR
 - These findings should be taken into account when choosing patients for HR
- Revision rates change by removing discontinued devices from analyses
- Revision estimates differ between non-standardized and standardized reporting

Conclusions (2)

- Findings highlight importance of evaluating adverse event rates using standardized outcome metrics to account for exposure time and thus facilitate comparisons between studies
- Need to place greater emphasis on influence of market status when considering which prosthesis may be most beneficial
- Large-scale, long-term comparative studies and head-tohead RCTs that incorporate standardized outcome measures both pre- and post-operatively are needed
 - Also need to examine outcome differences by gender to inform which devices may be better for males or females

ACKNOWLEDGEMENTS

Investigators

- Principal Investigator:
 - Deborah Marshall
- Co-Investigators:
 - Orthopedic Surgeons:
 - Jason Werle
 - Donald Dick
 - Greg O'Connor
 - Cy Frank
 - Research Librarian:
 - Diane Lorenzetti
 - Alberta Health Services, Strategic Clinical Networks
 - Tracy Wasylak
 - Tom Noseworthy

Research Staff

- Karen Pykerman
- Aish Sundaram
- Sanne Heintzbergen

*Manuscript currently in submission

THANK YOU!

27

Karen Pykerman, MPH
Research Associate, University of Calgary
kvpykerm@ucalgary.ca
(403) 210-6706

PERSON YEARS CALCULATIONS

- Adverse events per 1000 person years in an individual study= ((AE)/(participants x T)) x 1000
 - Where:
 - AE = # of adverse events that occurred within the study population
 - participants = total # participants in the study population
 - T = mean follow-up time of the study

- Weighted average (by sample size)= $(w_1x_1+w_2x_2+...w_nx_n)/(w_1+w_2+...w_n)$
 - Where:
 - w = individual study sample size
 - x = individual study adverse event rate per 1000 person years

Comparison of weighted and un-weighted averages per 1000 person years using the outcome of revisions as an example

		All devices (both in-use and discontinued)		Currently in-use devices	
		THA	HR	THA	HR
Weighted Average		6.7	10.8	6.5	7.8
Un-weighted Average		10.4	18.7	9.5	10.3
	N	85	52	24	36

HOW REVISIONS ARE REPORTED IN JRR ANNUAL REPORTS

Device	Australia	New Zealand	Sweden	England and Wales
THA	Cumulative	Proportion of	Proportion of	0.74 revisions per
	percent	revisions relative	revisions relative	100 observed years
	revisions at	to all THA primary	to all primary	
	10 years	implants (3.3%)	implants (10-	
	(6.2%)	over 12 years	12%) over 10	
			years	
HR	Cumulative	Proportion of	Proportion of	1.42 revisions per
	percent	revisions relative	revisions relative	100 observed years
	revisions at	to all THA primary	to all primary	
	10 years	implants (2.9%)	implants (<1%)	
	(7.5%)	over 12 years	over 10 years	

RESULTS: ALL ADVERSE EVENTS

Summary of findings comparing market status group with results unstratified*

Adverse events (weighted average per 1000 person years)	(both in	All devices (both in-use and discontinued)		Currently in-use devices		
, , ,	THA	HR		THA	HR	
Revisions	6.7	10.8		6.5	7.8	
N	85	52		24	36	
Reoperations	1.6	7.1		4.4	7.4	
N	15	8		3	7	
Dislocations	5.7	2.2		5.1	2.6	
N	55	28		12	22	
Infections/sepsis	2.2	2.3		4.4	1.8	
N	43	30		10	22	
Femoral neck fractures	3.0	5.7		1.3	6.3	
N	7	22		2	15	
The average time to revision (in years)	7.7	3.0		5.7	2.9	
N	10	9		2	7	
Early revisions/reoperation within						
5 years of surgery	4.3	11.3		4.0	10.3	
N	21	19		8	12	

^{*} Shading indicates the average per 1000 person years is higher within that market status group

- Revision, reoperation, and femoral neck fracture rates higher in HR devices
- Average time to revision is shorter for HR devices
- Dislocation rates are higher in THA devices